Helper
Conversation API

Chat API

Send and receive messages in a Helper conversation

Chat API

The Chat API allows you to send messages to Helper and receive AI-generated responses. This API follows the Vercel AI SDK streaming response format, making it compatible with various client libraries.

Send Message

POST /api/chat

Sends a message to Helper and returns a streaming response with the AI-generated reply.

Headers

HeaderValueDescription
AuthorizationBearer <token>Session token obtained from the Session API
Content-Typeapplication/jsonType of the request payload

Request Parameters

ParameterTypeRequiredDescription
messageobjectYesMessage object containing the content to send to Helper.
conversationSlugstringYesSlug of the conversation to send the message to.

Message Object

The message object should have the following structure:

FieldTypeRequiredDescription
rolestringYesEither "user" or "assistant".
contentstringYesText content of the message.
idstringNoUnique identifier for the message. If not provided, one will be generated.

Example Request Body

{
  "message": {
    "role": "user", 
    "content": "How can I update my shipping address?",
    "id": "msg_1234"
  },
  "conversationSlug": "abc123def456"
}

Response

The response is a streaming response following the Vercel AI SDK format, with events for:

  • Text content chunks
  • Tool calls (if any)
  • Final message annotations

The full response is assembled by concatenating the text chunks as they arrive.

Error Responses

Status CodeErrorDescription
401Invalid tokenThe session token is invalid or expired.
404Mailbox not foundThe mailbox specified in the session doesn't exist.
404Conversation not foundThe specified conversation doesn't exist.
401UnauthorizedThe user doesn't have permission to access this conversation.

Streaming Responses

The chat API uses a streaming response format that follows the Vercel AI SDK standard. This allows for real-time display of AI responses as they're generated.

For detailed information about the data stream protocol, refer to the Vercel AI SDK Stream Protocol documentation.

Response Format

The response is a stream of server-sent events (SSE), with each event containing a part of the response:

data: {"type":"text","value":"Hello! I'd be happy to help you update your shipping address. "}
data: {"type":"text","value":"You can change your shipping address by following these steps:"}
data: {"type":"text","value":"\n\n1. Log into your account\n2. Go to 'Account Settings'\n3. Select 'Addresses'\n4. Click 'Edit' next to your existing address or 'Add New Address'\n5. Update the information and save your changes"}
data: {"type":"text","value":"\n\nIs there anything else you need help with today?"}
data: {"type":"messageAnnotation","value":{"id":"12345","traceId":"trace_abc123"}}

Handling Streams in JavaScript

You can use the Vercel AI SDK or manually handle the streams:

Using Vercel AI SDK (recommended)

import { useChat } from 'ai/react';
 
function ChatComponent() {
  const { messages, input, handleInputChange, handleSubmit } = useChat({
    api: 'https://helper.ai/api/chat',
    headers: {
      'Authorization': `Bearer ${sessionToken}`
    },
    body: {
      conversationSlug: conversationSlug
    }
  });
  
  // Render your chat UI using messages, input, etc.
}

Manual Stream Handling

async function sendMessage(content) {
  const response = await fetch('https://helper.ai/api/chat', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': `Bearer ${sessionToken}`
    },
    body: JSON.stringify({
      message: { role: 'user', content },
      conversationSlug: conversationSlug
    })
  });
  
  const reader = response.body.getReader();
  const decoder = new TextDecoder();
  
  let responseText = '';
  
  while (true) {
    const { done, value } = await reader.read();
    if (done) break;
    
    const chunk = decoder.decode(value);
    const lines = chunk.split('\n');
    
    for (const line of lines) {
      if (line.startsWith('data: ')) {
        const data = JSON.parse(line.substring(6));
        if (data.type === 'text') {
          responseText += data.value;
          // Update UI with new text
        }
      }
    }
  }
  
  return responseText;
}

Metadata and Parameters

Tool Integration

The chat API can utilize tools that you've configured in your Helper mailbox. When Helper decides to use a tool, the response will include tool call information.

Example Integration

Here's a complete example of how to use the Chat API in a simple web application:

// First, create a session
async function createSession(email, mailboxSlug) {
  const timestamp = Date.now();
  const emailHash = await generateHmac(email, timestamp); // Implementation depends on your backend
  
  const response = await fetch('https://helper.ai/api/widget/session', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      email,
      emailHash,
      mailboxSlug,
      timestamp,
      currentURL: window.location.href
    })
  });
  
  return await response.json();
}
 
// Then create a conversation
async function createConversation(token) {
  const response = await fetch('https://helper.ai/api/chat/conversation', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': `Bearer ${token}`
    },
    body: JSON.stringify({
      isPrompt: false
    })
  });
  
  return await response.json();
}
 
// Finally, send a message and handle the streaming response
async function sendMessage(token, conversationSlug, messageContent) {
  const response = await fetch('https://helper.ai/api/chat', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': `Bearer ${token}`
    },
    body: JSON.stringify({
      message: { role: 'user', content: messageContent },
      conversationSlug
    })
  });
  
  // Handle streaming response
  const reader = response.body.getReader();
  const decoder = new TextDecoder();
  
  let fullResponse = '';
  
  while (true) {
    const { done, value } = await reader.read();
    if (done) break;
    
    const chunk = decoder.decode(value);
    const lines = chunk.split('\n');
    
    for (const line of lines) {
      if (line.startsWith('data: ')) {
        try {
          const data = JSON.parse(line.substring(6));
          if (data.type === 'text') {
            fullResponse += data.value;
            // Update UI with incremental response
            updateResponseUI(fullResponse);
          }
        } catch (e) {
          console.error('Error parsing response chunk', e);
        }
      }
    }
  }
  
  return fullResponse;
}
 
// Example usage
async function startChat() {
  const { token } = await createSession('user@example.com', 'your-mailbox');
  const { conversationSlug } = await createConversation(token);
  
  document.getElementById('send-button').addEventListener('click', async () => {
    const messageInput = document.getElementById('message-input');
    const message = messageInput.value;
    messageInput.value = '';
    
    // Display user message
    addMessageToUI('user', message);
    
    // Show typing indicator
    showTypingIndicator();
    
    // Send to API and get streaming response
    await sendMessage(token, conversationSlug, message);
    
    // Hide typing indicator when done
    hideTypingIndicator();
  });
}
 
startChat();

On this page